Work

Read from Lesson 1 of the Work, Energy and Power chapter at The Physics Classroom:

http://www.physicsclassroom.com/Class/energy/u5l1a.html http://www.physicsclassroom.com/Class/energy/u5l1aa.html

MOP Connection:

Work and Energy: sublevel 1

- 1. An **impulse** is a force acting over some amount of time to cause a change in momentum. On the other hand, work is a <u>force</u> acting over some amount of <u>displacement</u> to cause a change in <u>energy</u>.
- 2. Indicate whether or not the following represent examples of work.

		Work Done?
a.	A teacher applies a force to a wall and becomes exhausted. Explanation:	Yes or No
b.	A weightlifter lifts a barbell above her head. Explanation: force is applied equal to gran that on all force to move the burbell a distance	Yes or No?
c.	A waiter carries a tray full of meals across a dining room at a constant speed. Explanation: Constant velocity means no net force.	Yes or No?
d.	A rolling marble hits a note card and moves it across a table. Explanation: The marble did not apply a fonce over a distance	Yes or No
e.	A shot-putter launches the shot. Explanation: a force is applied over the distance that the shot-putter's arm	Yes or No?

Moves

3.	Work is a	; a + or - sign on a work value indicates information about
		d to a cd t

- a. vector; the direction of the work vector
- b. scalar; the direction of the work vector

vector; whether the work adds or removes energy from the object d scalar; whether the work adds or removes energy from the object

- 4. Which sets of units represent legitimate units for the quantity work? Circle all correct answers.
 - a.) Joule

c. Foot x pound e. $kg \times m/sec^2$

- b) N x m
 - d. kg x m/sec
 - (f) kg x m²/sec²
- W= Fd = (N)(m) = kqm(n)

The amount of work (W) done on an object by a given force can be calculated using the formula

$W = F d \cos \Theta$

where F is the force and d is the distance over which the force acts and Θ is the angle between F and d. It is important to recognize that the angle included in the equation is not *just any old angle*; it has a distinct definition that must be remembered when solving such work problems.

5. For each situation below, calculate the amount of work done by the applied force. PSYW

- 6. Indicate whether there is positive (+) or negative (-) work being done on the object.
- a. An eastward-moving car skids to a stop across dry pavement.
- _______ b. A freshman stands on his toes and lifts a **World Civilization book** to the top shelf of his locker.
 - c. At Great America, a roller coaster car is lifted to the peak of the first hill on the Shock Wave.
 - d. A catcher puts out his mitt and catches the baseball.
 - e. A falling parachutist opens the chute and slows down.
- 7. Before beginning its initial descent, a roller coaster car is always pulled up the first hill to a high initial height. Work is done on the car (usually by a chain) to achieve this initial height. A coaster designer is considering three different angles at which to drag the 2000-kg car train to the top of the 60-meter high hill. Her big question is: which angle would require the most work?

 Show your answers and explain.

Angle	Force	Distance	Work
35°	1.15 * 10 ⁴ N	105 m	989000 5
45°	1.41 * 10 ⁴ N	84.9 m	846000 J
55°	1.64 * 10 ⁴ N	73.2 m	689000 3

8. The following descriptions and their accompanying free-body diagrams show the forces acting upon an object. For each case, calculate the work done by these forces; use the format of force \bullet displacement \bullet cosine(Θ). Finally, calculate the total work done by all forces.

Free-Body Diagram	Forces Doing Work on the Object Amount of Work Done by Each Force
a. A 10-N force is applied to push a block across a frictionless surface for a displacement of 5.0 m to the right.	$W_{\text{norm}} = \underline{20} \cdot \underline{0} \cdot \cos(\underline{}) = \underline{0} $
↑F _{norm} =20 N	$W_{app} = 10 \cdot S \cdot \cos(0) = 50 J$
→ F _{app} =10 N	$W_{\text{grav}} = \frac{-20}{0} \cdot \frac{0}{0} \cdot \cos(\frac{-1}{0}) = \frac{0}{0}$
F _{grav} =20 N	$W_{\text{total}} = \underbrace{50}_{J}$
b. A 10-N frictional force slows a moving block to a stop along a horizontal surface after a displacement	$W_{\text{norm}} = 20 \cdot 0 \cdot \cos(\underline{}) = 0$
of 5.0 m to the right.	$W_{grav} = \underline{ \ \ } O \bullet \underline{ \ \ } \circ \cos(\underline{ \ \ }) = \underline{ \ \ } J$
∫F _{norm} =20 N	$W_{\text{frict}} = \frac{-70}{0} \cdot \frac{5}{0} \cdot \cos(\frac{0}{0}) = \frac{-56}{0} \text{ J}$
F _{frict} =10 N←	$W_{\text{total}} = \frac{-50}{}$
↓F _{grav} =20 N	
c. A 10-N forces is applied to push a block across a frictional surface at	$W_{\text{norm}} = Z \circ \bullet C \circ \cos(\underline{}) = C \cup J$
constant speed for a displacement of 5.0 m to the right.	$W_{app} = 10 \cdot 5 \cdot \cos(5) = 50$
F _{frict} = F _{norm} =20 N	$W_{\text{grav}} = \underline{ } \bigcirc \bigcirc \bullet \underline{ } \bigcirc \bigcirc \bullet \cos(\underline{ }) = \underline{ } \bigcirc \bigcirc \bigcirc \bigcirc$
10 N F _{app} =10 N	$W_{\text{frict}} = \frac{-10}{100} \cdot \frac{5}{100} \cdot \cos(\frac{5}{100}) = \frac{-50}{100} \text{ J}$
F _{grav} =20 N	W _{total} =
d. A 2-kg object is sliding at constant speed across a frictionless surface for a	
displacement of 5.0 m to the right. † F _{norm} =20 N	$W_{\text{norm}} = \underline{Zo} \cdot \underline{O} \cdot \cos(\underline{D}) = \underline{O}$
inorm 23 ii	$W_{\text{grav}} = -\frac{7}{2} \cdot \frac{1}{2} \cdot \cos(\underline{}) = \frac{0}{2} $
	W _{total} =
F _{grav} =20 N	

Free-Body Diagram	Forces Doing Work on the Object Amount of Work Done by Each Force
e. A 2-kg object is pulled upward at constant speed by a 20-N force for a vertical displacement of 5.0 m. Frens=20 N Fgrav=20 N	$W_{\text{tens}} = 20 \cdot 5 \cdot \cos(0) = 10 \text{ J}$ $W_{\text{grav}} = 20 \cdot 5 \cdot \cos(0) = -10 \text{ J}$ $W_{\text{total}} = 0 \text{ J}$
f. A 2-kg tray of dinner plates is held in the air and carried a distance of 5.0 m to the right. Fapp=20 N Fgrav=20 N	$W_{app} = 7 \circ \cdot \circ $

- When a force is applied to do work on an object, does the object always accelerate? Explain why or why not.
 - a frictional force may be acting against the motion the net work with be zero, but the applied force is dong work.
- 10. Determine the work done in the following situations.
 - Jim Neysweeper is applying a 21.6-N force downward at an angle of 57.2° with the horizontal

to displace a broom a distance of 6.28 m.

$$W = fd \cos \theta$$

$$= (21.6)(6.28)(05(57.2) = 73.5 \text{ J}$$

Ben Pumpiniron applies an upward force to lift a 129-kg barbell to a height of 1.98 m at a constant speed.

An elevator lifts 12 occupants up 21 floors (76.8 meters) at a constant speed. The average mass of the occupants is 62.8 $\hat{k}g$.

Total mass : 12(62.8):753.6 fg
$$W = fd \cos \theta$$
= myd
= (753.6)(5.8)(76.8) = 568 our J